

RECENT HEAVY FLAVOR RESULTS FROM CMS

KEITH ULMER UNIVERSITY OF COLORADO

Why flavor physics?

- Study of B hadron production and properties
 - Masses, lifetimes, branching ratios...
- Quarkonium production properties
 - Polarization, production ratios...

- Quarkonia-like states: X, Y, Z's
- New b-baryons
- Indirect searches for new physics
 - New heavy particles in loops can induce measurable non-SM effects
 - Complementary to the direct search program

Why flavor physics?

- Study or B hadron production and properties
 - Masses, lifetimes, branching ratios...
- Quarkonium production properties
 - Polarization, production ratios...
- Search for and study new or exotic states
 - New b-baryons
 - Quarkonia-like states: X, Y, Z's
- Indirect searches for new physics
 - New heavy particles in loops can induce measurable non-SM effects
 - Complementary to the direct search program

discovery

 $\rightarrow \mu^{+}\mu^{-}$ search

t,c,u d

s(d)

The CMS detector

Tracking efficiency

- □ Silicon tracker covers out to $|\eta| < 2.4$ and down to track $p_T > 300$ MeV
- Great track reconstruction efficiency
 - Measured in data with good agreement with simulation
 - $\sim 100\%$ for central muons
 - □ Hadron efficiency 85-95% due to tracks lost in interactions
 - Excellent displaced track
 reconstruction out to 50 cm
 displacement from beamline

Tracking performance

- Track impact parameter resolution 25-200 μm
 - $lue{}$ Improves with higher p_T and smaller η
- Track momentum resolution 0.6-3.0%
 - Improves with smaller η
- Provides good mass and lifetime resolution
 - □ For B⁺→J/ψK⁺ decays mass resolution ~30 MeV and core $c\tau$ resolution ~30 μm

Muon reconstruction efficiency

- Muons reconstructed out to $|\eta| < 2.4$ and down to $p_T > 3$ GeV
- Muon identification efficiency plateaus to nearly 100% with turn on at low p_T
- □ Trigger efficiency plateaus ~85%
- Low muon mis-ID rates measured in data
 - □ ≈0.1% for π and K
 - □ ≈0.05% for protons

Heavy flavor triggers

- Use dedicated dimuon trigger paths for heavy flavor studies
- Exploit good momentum, impact parameter, mass and vertex resolution at trigger level to select interesting topologies
- Bandwidth restrictions are the main limitation for most measurements

Things I won't have time for...

14 papers from 2 years worth of data and counting...

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

Measurement of Λ_b production

Motivation: b production studies

- LHC opened new energy regime for b production
 - Tests understanding of production dynamics and perturbative QCD
 - Tests extrapolation from Tevatron energies
- □ b production measurements help model backgrounds for many searches such H→bb or SUSY with b jets

arXiv:1205.6344
Data vs FONLL and NLO MC (POWHEG, MC@NLO)

\(\Lambda_b \) production tests baryon vs meson production differences

∧ b reconstruction

- - J/ $\psi \rightarrow \mu^+ \mu^-$
- □ Use $J/\psi \rightarrow \mu^+\mu^-$ to trigger events
 - \square p_T(μ ⁻) > 3.5 GeV, $|\eta(\mu$ ⁻)| < 2.2
 - \blacksquare Displaced $\mu^+\mu^-$ vertex $>3\sigma$ from beamline

 - Vertex($\mu^+\mu^-$) fit confidence > 10%
- □ Offline J/ψ cuts only as tight as required by the trigger
- $\hfill\square$ Reduces backgrounds to real displaced J/ψ from b decays

Λ_b reconstruction

- □ Λ selection
 - Combine good oppositely charged displaced tracks
 - \square Track $d_0 > 0.5 \sigma$
 - \square Vertex > 5 σ from beamline
 - \square p_T(p) > 1 GeV
 - Reject contamination from masses consistent with Ks
- - As loose as possible to keep efficiency high and to probe a broad kinematic range
 - $p_{T}(\Lambda_{b}) > 10 \text{ GeV, } |y(\Lambda_{b})| < 2.0$
 - Vertex(J/ $\psi \Lambda$) fit confidence > 1%
- \square Total signal yield = 1252 \pm 42

Λ_b cross section measurement

- □ Slice data in bins in Λ_b p_T and rapidity and fit for signal yields in each
- Determine efficiency in each bin
 - Take factorized approach

$$\epsilon = \mathcal{A} \cdot \epsilon_{\mathrm{trig}}^{\mu_1} \cdot \epsilon_{\mathrm{trig}}^{\mu_2} \cdot \epsilon_{\mathrm{reco}}^{\mu_1} \cdot \epsilon_{\mathrm{reco}}^{\mu_2} \cdot \epsilon_{\mathrm{trig}}^{\mu_{\mu}} \cdot \epsilon_{\mathrm{sel}}^{\Lambda_{\mathrm{b}}}$$

- Trigger and offline dimuon efficiencies measured in data with "tag and probe" approach
- lacktriangle Acceptance and Λ and Λ_b selection cuts measured in simulation
 - Reweight MC to match data pileup distribution and $\Lambda_b p_T$ and y distributions

$p_{ m T}^{\Lambda_{ m b}}$	$n_{\rm sig}$	ϵ
(GeV)	events	(%)
10 - 13	293 ± 22	0.29 ± 0.03
13 - 15	240 ± 18	0.79 ± 0.08
15 - 18	265 ± 19	1.54 ± 0.16
18 - 22	207 ± 16	2.34 ± 0.23
22 - 28	145 ± 14	3.21 ± 0.34
28 - 50	87 ± 11	3.96 ± 0.50
$ y^{\Lambda_{\rm b}} $	$n_{ m sig}$	ϵ
	events	(%)
0.0 - 0.3	233 ± 17	0.74 ± 0.09
0.3 - 0.6	256 ± 18	0.77 ± 0.09
0.6 - 0.9	206 ± 16	0.81 ± 0.09
0.9 - 1.2	196 ± 17	0.70 ± 0.08
1.2 - 1.5	189 ± 17	0.67 ± 0.09
1.5 - 2.0	162 ± 18	0.65 ± 0.09

Λ_b cross section measurement

- \Box Efficiency rises rapidly vs p_T , mostly flat vs y
- Biggest efficiency losses from
 - □ Λ reco (10-16% efficient)
 - □ Dimuon acceptance (12-63% efficient)
 - Displaced dimuon trigger (33-56% efficient)
- Total integrated efficiency = 0.7%
- □ Efficiency ratio also considered $\underline{\epsilon(\Lambda_b)}$ for asymmetry $\overline{\epsilon(\overline{\Lambda}_b)}$ measurement
 - Lower p efficiency from more interactions

∧ b cross section results

 Measure cross section by dividing yields by efficiency and luminosity

■ 54% uncertainty on BF($\Lambda_{\rm b}$ → J/ $\psi\Lambda$), so report

 $\sigma(pp \rightarrow \Lambda_b X)^*BR(\Lambda_b \rightarrow J/\psi \Lambda)$

Λ_b cross section compared to mesons

- Similar measurements have been made for B⁺, B⁰ and B_s mesons
- Shape vs B p_T shows interesting feature
 - Baryon spectrum falls faster than meson spectra
 - Same underlying b quark production spectra
 - Something happening in baryon vs meson hadronization

Λ_b cross section compared to mesons

□ Similar feature observed by LHCb in measurement of f_{∧b}/(f_u+f_d) vs momentum

- Historically, hadronization fractions assumed to be constant
- However, measurements between LEP and Tevatron not consistent
 - HFAG 2012: Tevatron ($p_T(b) \sim 10 \text{ GeV}$): $f(b\text{-baryon}) = 0.212 \pm 0.069$
 - HFAG 2012: LEP ($p_T(b) \sim 40 \text{ GeV}$): $f(b\text{-baryon}) = 0.090 \pm 0.015$
- □ Discrepancy in baryon/meson production measurements between Tevatron and LEP could be explained by different p_T spectra

Λ_b/Λ_b asymmetry results

- Also measure yields and efficiencies as ratios between particles and antiparticles
 - $lue{}$ Use charge of higher momentum Λ track to identify the (anti)proton
- Results consistent with no asymmetry, within large uncertainties
- Tests baryon transport models from initial pp state

Discovery of $=\frac{1}{b}$ baryon

b baryon states

Press for Ξ_b^* baryon discovery

Press for Ξ_b^* baryon discovery

Anatomy of a discovery

- * - b reconstruction

- \square Search strategy to maximize Ξ_b yield
 - Still a complicated decay chain itself

$$\Xi_b^- \to J/\Psi(\mu^-\mu^+)\Xi^-(\Lambda\pi^-)$$
, with $\Lambda \to p\pi^-$

- \square OR of two J/ ψ triggers used

 - Prompt trigger with $p_T(\mu^+\mu^-) > 13$ GeV and $\eta(\mu^+\mu^-) < 1.25$
- □ Λ reconstructed as in $\Lambda_b \rightarrow J/\psi \Lambda$ but with 10σ vertex displacement

- * L b reconstruction

 Ξ_b^- first observed here by D0 PRL 99, 052001 (2007) and CDF PRL 99, 052002 (2007)

- □ Search strategy to maximize = b
 yield
 - Still a complicated decay chain itself

$$\Xi_b^- \to J/\Psi(\mu^-\mu^+)\Xi^-(\Lambda\pi^-)$$
, with $\Lambda \to p\pi^-$

- \square OR of two J/ ψ triggers used
 - Displaced trigger as in $\Lambda_b \rightarrow J/\psi \Lambda$ analysis
 - Prompt trigger with $p_T(\mu^+\mu^-) > 13$ GeV and $\eta(\mu^+\mu^-) < 1.25$
- □ Λ reconstructed as in $\Lambda_b \rightarrow J/\psi \Lambda$ but with 10σ vertex displacement

 $M(p^{\dagger}\pi^{-})$ [GeV]

$\frac{1}{2}$ reconstruction

- = candidates
 reconstructed
 from Λπ
 pairs
- $\begin{array}{ccc} \Xi_b \\ \text{candidates} \\ \text{reconstructed} \\ \text{from J/}\psi \ \Xi^- \\ \text{pairs} \end{array}$

- Final selection cuts determined with optimization algorithm on data
 - Randomly varying selection and keeping better combination
 - Select on track d_0/σ , vertex displacement significance, pointing angles, vertex confidences, and track and resonance p_T
 - 30 variables in total

Putting it all together

= * = _b background shape

- □ Background dominated by random $\Xi_b \pi^+$
- Background shape from wrong sign pions
 - Toy model from data shapes for $p(\Xi_b)$, $p(\pi)$ and angle between Ξ_b and π , assumed to be uncorrelated
 - Fit toy results for shape
 - Compares well with nominal wrong sign distribution

= * = _b signal

- 21 events observed with 12 < Q < 18 MeV
 - 3.0 ± 1.4 background events expected
- Signal fit with Gaussian convolved with BW
 - Gaussian fixed to expected resolution of 1.9 MeV from simulation
 - Width measured as 2.1 ± 1.7 (stat.) MeV
- $Q = 14.8 \pm 0.7 \pm 0.3 \text{ MeV}$
- m(Ξ_b^*) = 5945.0 \pm 0.7 \pm 0.3 \pm 2.7 (PDG) MeV
- Significance determination from $\ln(\mathcal{L}_{s+b}/\mathcal{L}_b) = 6.9\sigma$
- Confirmed with toys varying backgrounds within uncertainties including LEE = 5.7σ

What it really looks like

What it really, really looks like

Search for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$

Search for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$

The rare flavor changing neutral current decays are highly

suppressed in the SM

- □ New physics scenarios can significantly enhance the BR's
 - □ In MSSM BR \propto (tan β)⁶
 - Especially sensitive to models with extended Higgs sectors
- Small theoretical uncertainties and high sensitivity to NP make this a Golden Channel

Analysis overview

- Signal
 - □ Clean B decay with only 2 muons
 - Long-lived B produces well separated vertex
- Background
 - Combinatorial: 2 semi-muonic B decays
 - A semi-muonic B decay plus a misidentified charged hadron
 - Rare single B decays, such as

 - $B_s^0 \to K^- K^+ \text{ (peaking)}$ $B_s^0 \to K^- \mu^+ \nu \text{ (non-peaking)}$

Main handles: good dimuon vertex; correct B mass; momentum pointing to interaction point

Signal selection

- Mass windows: 5.2-5.3 GeV for B^0 and 5.3-5.45 GeV for B^0 Mass resolution 36-80 MeV depending on rapidity
- Split into barrel (both $|\eta_u| < 1.4$) and endcap channels
- Selection cuts: 3D flight length significance (I_{3D}), momentum points back to primary vertex (α_{3D}), $p_{T\mu} > 4.0$ or 4.5 GeV, $p_{TB} > 6.5$ GeV, good B vertex fit, and isolated decay (next slide)

 Select best primary vertex based on consistency with B candidate momentum direction

Average of 8 primary vertices per event

Signal selection: isolation

Require relative isolation of muon pair

$$I = rac{p_{\perp}(\mu^{+}\mu^{-})}{p_{\perp}(\mu^{+}\mu^{-}) + \sum\limits_{\Delta R < 0.7} p_{\perp}}$$

- \blacksquare Cone of \triangle R = 0.7 around the dimuon momentum
- Include all tracks with $p_T > 900$ MeV from same primary vertex or within 500 μ m of B vertex
- Require isolation > 0.75
- All selection criteria have been optimized for limit sensitivity before unblinding signal region

Pileup independence

- □ Check influence of pileup on selection cuts with $B^+ \to J/\Psi(\mu^-\mu^+)K^+$ events in data
- Confirm with MC studies
- No significant dependence in efficiency vs pileup out to ~30 PV's

Background estimation

- □ Non-peaking background measured ¹√ 0.3 in data
 - Count events in B mass sidebands4.80-5.20 GeV and 5.45-6.00 GeV
 - Interpolate to signal region with assumption of flat shape
- Peaking background obtained from MC with inputs from data
 - B→hh backgrounds with two muons from misidentified charged hadrons peak in B mass
 - Measure muon mis-ID rates in data from identified K and π from D^(*) and p from Λ samples

- Use MC without muon selection cuts to simulate backgrounds and apply fake rate measurements from data
- lacksquare Affects B^0 more than B^0_s because backgrounds peak low

BR calculation: normalized to B+

- □ Measure $B_s^0 \to \mu^- \mu^+$ branching fraction relative to normalization channel $B^+ \to J/\Psi(\mu^- \mu^+)K^+$
 - Reduce many systematic effects with similar reconstruction and triggering techniques

$$B(B_s^0 \to \mu\mu) = \frac{N(B_s^0 \to \mu\mu)}{N(B^+ \to J/\Psi K)} \times \frac{\varepsilon_{B^+}}{\varepsilon_{B_s}} \times \frac{f_u}{f_s} \times B(B^+ \to J/\Psi K)$$

- \square $B(B^+ \rightarrow J/\Psi K)$ is well known and relatively large
- \square Take f_{υ}/f_{s} from LHCb [arXiv:1111.2357]
- Only need relative efficiency terms
- No need for absolute luminosity measurement
- Similar reconstruction cuts for B⁺ as signal, but from tighter trigger

Selection efficiency

- Signal and normalization efficiencies calculated in MC
 - Overall signal efficiency 0.29% in the barrel and 0.16% in the endcap
 - Overall normalization efficiency 0.11% (0.03%) in the barrel (endcap)
- Validate MC performance with control samples:

$$B_s^0 \rightarrow J/\Psi(\mu^-\mu^+)\phi$$
 $B^+ \rightarrow J/\Psi(\mu^-\mu^+)K^+$

- Good agreement observed
- Residual differences used as systematics

Trigger efficiency

- □ Dedicated signal trigger for $B \rightarrow \mu^+ \mu^-$
 - Opposite charge muons with mass 4.8-6.0 GeV
 - \square p_T(μ)> 4 GeV, p_T($\mu\mu$) > 4 (6) GeV in barrel (endcap)
 - □ Dimuon vertex fit confidence > 0.5%
- Normalization trigger
 - lacktriangle Same displaced dimuon trigger as in $\Lambda_b {
 ightarrow} {
 m J}/\Psi \Lambda$ analysis
- \square Trigger efficiency measured after selection cuts $\approx 80\%$
 - Stable with time
 - Measured in MC
 - Cross checked with measurement in data

Systematic uncertainties

Fragmentation functions (fs/fu)		8%			
Background					
 Combinatorial: loosened selection cuts; inve 	rted isolation studies	4%			
Rare peaking decays: BF and mis-ID uncerte	ainties	20%			
Signal					
Acceptance: variation from different bb pro	oduction processes	3.5/5%			
Selection efficiency: comparison of data an	d MC cut by cut	3%			
$lue{}$ Track momentum scale: from J/ψ resonance	reconstructed mass	3%			
Normalization					
Selection efficiency: comparison of data an	d MC cut by cut	4%			
Hadron track efficiency: from data with D*	decay studies	4%			
Yield fits: variation of fitting functions		4%			
Muon identification and trigger					
Evaluated from data/MC differences					
Muon identification efficiency ratio		4/8%			
Trigger efficiency ratio		3/6%			
Rare decays background					
Total	(barrel/endcap)	24/26%			

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Results

Variable	$B^0 o \mu^+ \mu^-$ Barrel	$B_s^0 ightarrow \mu^+ \mu^-$ Barrel	$B^0 ightarrow \mu^+ \mu^-$ Endcap	$B_s^0 o \mu^+ \mu^-$ Endcap
Signal (SM)	0.24 ± 0.02	2.70 ± 0.41	0.10 ± 0.01	1.23 ± 0.18
Combinatorial bg	0.40 ± 0.34	0.59 ± 0.50	0.76 ± 0.35	1.14 ± 0.53
Peaking bg	0.33 ± 0.07	0.18 ± 0.06	0.15 ± 0.03	0.08 ± 0.02
Sum	0.97 ± 0.35	3.47 ± 0.65	1.01 ± 0.35	2.45 ± 0.56
Observed	2	2	0	4

Observation consistent with expectation from background + SM signal in all 4 channels

6/8/12

Branching fraction upper limits

- \square Upper limits for $B_s^0 \to \mu^- \mu^+$ and $B^0 \to \mu^- \mu^+$ computed with CLs
 - Combine barrel and endcap channels
 - Background only p value for $B_s^0 \rightarrow \mu^- \mu^+ = 0.11$ (1.2 σ)

upper limit (95%CL)	observed	(median) expected 8.4×10^{-9} 1.6×10^{-9} 1.6×10^{-9} Accepted by JHEP
${\cal B}(B^0_s o\mu^+\mu^-)$	7.7×10^{-9}	8.4×10^{-9} arXiv:72 arXi
${\cal B}(B^0 o\mu^+\mu^-)$	1.8×10^{-9}	1.6×10^{-9}

Comparison and prospects

- UL's steadily falling over time
- $\square \quad B_s^0 \to \mu^- \mu^+ \text{ now } \sim 2 \times \text{SM}$

95% UL's (×10 ⁻⁹)	CMS 5 fb-1	Atlas 2 fb-1	LHCb 1 fb-1	CDF 10 fb-1	D0 6 fb-1
$B_s \rightarrow \mu\mu$	7.7	22	4.5	31	51
$B^0 \rightarrow \mu\mu$	1.8		1.0	4.6	

- □ CDF also reports central value of $13^{+9}_{-7} \times 10^{-9}$ for $B^0_s \rightarrow \mu^- \mu^+$
- □ LHC already doubled 2011 dataset
- Total ~20 fb⁻¹ possible by end of 2012
- □ 2012 is the year to start to see or rule out SM $B_s^0 \rightarrow \mu^- \mu^+$

Prospects and interpretation

- New B_s→µµ limit constrains CMSSM parameter space beyond direct searches for many scenarios
 - Large tan β gives
 largest enhancements
- Large swaths of parameter space are within 2012 reach
- New physics can also suppress $B_s \rightarrow \mu\mu$, too!

Conclusion

- Very active heavy flavor physics program at CMS is off and running
- Results span wide range of physics interests
 - Perturbative QCD studies in heavy quark production
 - New and exotic state searches and measurements
 - Indirect searches for new physics
- Many more interesting topics accessible with existing and future data
 - $B^0 \rightarrow K^{*0} \mu \mu$, $\Lambda_b \rightarrow \Lambda \mu \mu$, $B_c \rightarrow J/\psi \pi$, CP studies in $B_s^0 \rightarrow J/\psi \phi$, A_{sl}^b more new b baryons, lifetime measurements, mass measurements, branching fractions, ...

Conclusion

- Very active heavy flavor physics program at CMS is off and running
- Results span wide range of physics interests
 - Perturbative QCD studies in heavy quark production
 - New and exotic state searches and measurements
 - Indirect searches for new physics
- Many more interesting topics accessible with existing and future data
 - $B^0 \rightarrow K^{*0} \mu \mu$, $\Lambda_b \rightarrow \Lambda \mu \mu$, $B_c \rightarrow J/\psi \pi$, CP studies in $B_s^0 \rightarrow J/\psi \phi$, A_{sl}^b more new b baryons, lifetime measurements, mass measurements, branching fractions, ...

Extra slides

More tracking performance plots

6/8/12

Keith Ulmer -- University of Colorado -- CMS

Muon system

- Muons reconstructed with three detector technologies
 - Drift tubes
 - Cathode strip chambers
 - Resistive plate chambers
- Muons required to be found by each of two reconstruction algorithms
 - Outside-in: stand alone track in muon system matched to a compatible track in silicon tracker
 - Inside-out: silicon track matched to compatible hits in muon system
- Low muon mis-ID rates
 - < 0.3% for pions and kaons</p>
 - \Box < 0.05% for protons

Λ_b cross section results

\square \bigwedge_{b} differential cross section results table

$p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}$	$n_{ m sig}$	ϵ	$d\sigma/dp_{T}^{\Lambda_{b}} \times \mathcal{B}(\Lambda_{b} \to J/\psi\Lambda)$	POWHEG	PYTHIA
(GeV)	events	(%)	(pb/GeV)	(pb/GeV)	(pb/GeV)
10 - 13	293 ± 22	0.29 ± 0.03	$240 \pm 20 \pm 30$	110^{+40}_{-30}	210
13 - 15	240 ± 18	0.79 ± 0.08	$108\pm8\pm12$	$54 {}^{+21}_{-12}$	102
15 - 18	265 ± 19	1.54 ± 0.16	$41\pm3\pm4$	29^{+10}_{-6}	55
18 - 22	207 ± 16	2.34 ± 0.23	$15.6 \pm 1.2 \pm 1.6$	$13.4^{+4.5}_{-2.7}$	24.0
22 - 28	145 ± 14	3.21 ± 0.34	$5.3 \pm 0.5 \pm 0.6$	$5.3^{+1.6}_{-1.1}$	9.3
28 - 50	87 ± 11	3.96 ± 0.50	$0.70 \pm 0.09 \pm 0.09$	$0.89 ^{+0.32}_{-0.15}$	1.42
$ y^{\Lambda_{ m b}} $	$n_{\rm sig}$	ϵ	$d\sigma/dy^{\Lambda_b} \times \mathcal{B}(\Lambda_b \to J/\psi\Lambda)$	POWHEG	PYTHIA
	events	(%)	(pb)	(pb)	(pb)
0.0 - 0.3	233 ± 17	0.74 ± 0.09	$370 \pm 30 \pm 50$	180^{+70}_{-40}	330
0.3 - 0.6	256 ± 18	0.77 ± 0.09	$390 \pm 30 \pm 50$	170^{-40}_{-40}	330
0.6 - 0.9	206 ± 16	0.81 ± 0.09	$300 \pm 20 \pm 30$	170^{+60}_{-40}	320
0.9 - 1.2	196 ± 17	0.70 ± 0.08	$330 \pm 30 \pm 40$	$160{}^{+60}_{-40}$	300
1.2 - 1.5	189 ± 17	0.67 ± 0.09	$330 \pm 30 \pm 50$	150^{+50}_{-40}	280
1.5 - 2.0	162 ± 18	0.65 ± 0.09	$180 \pm 20 \pm 30$	$130 {}^{+50}_{-30}$	250

Λ_b/Λ_b cross section results

\square \bigwedge_{b} antiparticle/particle ratio results

	Uncorrected		Data	POWHEG	PYTHIA
$p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}\left(\mathrm{GeV}\right)$	$n_{ m sig}^{\overline{\Lambda}_{ m b}}/n_{ m sig}^{\Lambda_{ m b}}$	$\epsilon(\overline{\Lambda}_b)/\epsilon(\Lambda_b)$	$\sigma(\overline{\Lambda}_b)/\sigma(\Lambda_b)$	$\sigma(\overline{\Lambda}_b)/\sigma(\Lambda_b)$	$\sigma(\overline{\Lambda}_b)/\sigma(\Lambda_b)$
10–13	0.96 ± 0.14	$0.84{\pm}0.09$	$1.14\pm0.17\pm0.12$	$0.98^{+0.02}_{-0.01}$	0.99
13-15	0.76 ± 0.11	0.79 ± 0.09	$0.96 \pm 0.14 \pm 0.10$	$0.98^{-0.01}_{-0.01}$	0.98
15–18	0.89 ± 0.13	0.90 ± 0.09	$0.98 \pm 0.14 \pm 0.09$	$1.01 ^{+0.01}_{-0.05}$	0.99
18-22	0.73 ± 0.12	0.95 ± 0.08	$0.77 \pm 0.12 \pm 0.07$	$0.97 ^{+0.05}_{-0.02}$	0.99
22-28	1.26 ± 0.24	0.94 ± 0.10	$1.33 \pm 0.26 \pm 0.14$	$0.99^{+0.02}_{-0.03}$	0.99
28–50	0.99 ± 0.25	0.72 ± 0.08	$1.37 \pm 0.35 \pm 0.14$	$0.96^{+0.06}_{-0.04}$	0.97
	Uncorrected		Data	POWHEG	PYTHIA
$ y^{\Lambda_{ m b}} $	$n_{ m sig}^{\overline{\Lambda}_{ m b}}/n_{ m sig}^{\Lambda_{ m b}}$	$\epsilon(\overline{\Lambda}_b)/\epsilon(\Lambda_b)$	$\sigma(\overline{\Lambda}_{\rm b})/\sigma(\Lambda_{\rm b})$	$\sigma(\overline{\Lambda}_b)/\sigma(\Lambda_b)$	$\sigma(\overline{\Lambda}_b)/\sigma(\Lambda_b)$
0.0-0.3	0.71 ± 0.10	0.79 ± 0.08	$0.89 \pm 0.13 \pm 0.09$	$0.98^{+0.02}_{-0.01}$	0.99
0.3-0.6	0.92 ± 0.13	0.90 ± 0.08	$1.02\pm0.14\pm0.09$	$1.01 ^{+0.01}_{-0.05}$	0.98
0.6-0.9	1.16 ± 0.18	0.88 ± 0.09	$1.32\pm0.21\pm0.13$	$0.97 {}^{+0.05}_{-0.02}$	0.97
0.9-1.2	0.99 ± 0.17	0.85 ± 0.09	$1.16\pm0.20\pm0.12$	$0.98^{+0.03}_{-0.02}$	1.00
1.2-1.5	0.92 ± 0.17	0.82 ± 0.11	$1.11\pm0.20\pm0.15$	$0.98^{-0.02}_{-0.02}$ $0.99^{+0.02}_{-0.01}$	1.00
1.5–2.0	0.66 ± 0.16	0.99 ± 0.11	$0.67 \pm 0.16 \pm 0.08$	$0.98 ^{+0.03}_{-0.02}$	0.98

$\Lambda_{\rm b}/\Lambda_{\rm b}$ interpretation

- J. Rosner 1205.1529 suggests non-factorizable effects could lead to the tt asymmetry observed at the Tevatron
- □ Also suggests that the same effects would lead to more Λ_b than anti- Λ_b close to the beamline at the LHC
- Our result is not inconsistent with that, but also not inconsistent with no asymmetry either

= * candidate event display

= * event selection algorithm

- Ξ_b⁻ selection algorithm:
 - At every iteration:
 - Choose randomly 2 variables.
 - Randomly: tighten one, loosen the other.
 - Look at Ξ_b⁻ mass distribution:
 - Signal region: 5.75 < M < 5.83 GeV
 - Side-bands: 5.69 < M < 5.75 or 5.83 < M < 5.89 GeV
 - Calculate: B = 2N_{side-bands}/3; S = N_{signal} B
 - Accept iteration if S does not decrease and:
 - S/sqrt(S+B) increases (then save the iteration) or
 - S/sqrt(S+B) decreases by at most r*10% (r = uniform random number). In this case proceed but do not save the iteration.

= * event selection

- A sampling of some cut values determined from the algorithm
 - \blacksquare After trigger and \land reconstruction

= * systematic effects

- □ Alternative functional forms for shapes of $p(\Xi_b)$, $p(\pi)$ and angle between Ξ_b and π for toy background shape determination
- Alternative background fit functions
 - \blacksquare Even 0th order polynomial shows significance > 5σ
- Fit procedure performance on MC compared to MC truth

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Candidate event

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Candidate event

All $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ selection cuts

Variable	Barrel	Endcap	units	comparison to old analysis
$p_{\perp\mu,1} >$	4.5	4.5	GeV	same
$p_{\perp \mu,2} >$	4.0	4.2	GeV	tighter in endcap
$p_{\perp\mu,2} > p_{\perp B} >$	6.5	8.5	GeV	tighter in endcap
$\ell_{3d} <$	1.5	1.5	cm	tighter
α <	0.050	0.030	rad	looser
$\chi^2/dof <$	2.2	1.8		looser
$\chi^2/dof < \ell_{3d}/\sigma(\ell_{3d}) >$	13.0	15.0		looser
I >	0.80	0.80		redefined
$d_{ca}^0 >$	0.015	0.015	cm	redefined
$\delta_{3D} <$	0.008	0.008	cm	new
$\delta_{3D}/\sigma(\delta_{3D}) < N_{trk} <$	2.000	2.000		new
$N_{trk} <$	2	2	tracks	new

$B_s \rightarrow \mu^+ \mu^-$ comparison with LHCb

Full 2011 datasets 95% UL's	CMS (×10 ⁻⁹)	LHCb (×10 ⁻⁹)
Bs→μμ expected	8.8	7.2
Bs $\rightarrow \mu\mu$ observed	7.7	4.5
$B^0 \rightarrow \mu\mu$ expected	1.6	1.1
$B^0 \rightarrow \mu\mu$ observed	1.8	1.0

LHCb advantages

- Better mass resolution: ~25 MeV vs ~35-70 MeV
- Higher trigger efficiency
- $lue{}$ More sophisticated analysis: BDT selection, combine different S/B bins vs cut and count in 2 bins

CMS advantages

- $lue{}$ Higher luminosity: Factor of ~ 5 in 2011, currently factor of > 10 in 2012
- (More room for improvement in analysis technique)

More $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ interpretation

MasterCode collaboration arXiv:1112.3564

Combination with LHCb (Summer 2011)

- □ The two LHC results for $B_s^0 \rightarrow \mu^- \mu^+$ have been combined to produce an upper limit of 1.1×10^{-8} at 95% confidence
- $\hfill \square$ All uncertainties treated as uncorrelated, except for f_s/f_d , which is taken to be 100% correlated between the measurements
- Same CL_s upper limit procedure as used for CMS and LHCb results independently
- □ Background-only p value = 8%, background plus SM signal p value = 55%, CDF central value p value = 0.3%
- □ Public as CMS PAS BPH-11-019